Copied to
clipboard

G = C9×C22⋊C8order 288 = 25·32

Direct product of C9 and C22⋊C8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C9×C22⋊C8, C222C72, C36.65D4, C23.3C36, C18.8M4(2), (C2×C8)⋊1C18, (C2×C18)⋊1C8, (C2×C72)⋊3C2, (C2×C6).2C24, (C2×C4).3C36, (C2×C36).7C4, (C2×C24).1C6, C2.1(C2×C72), C4.16(D4×C9), C18.11(C2×C8), C6.11(C2×C24), (C2×C12).7C12, C12.82(C3×D4), (C22×C4).4C18, (C22×C6).9C12, C22.9(C2×C36), (C22×C18).3C4, (C22×C36).3C2, C2.2(C9×M4(2)), C6.8(C3×M4(2)), (C22×C12).10C6, C18.20(C22⋊C4), (C2×C36).133C22, C3.(C3×C22⋊C8), (C3×C22⋊C8).C3, C2.2(C9×C22⋊C4), (C2×C18).38(C2×C4), (C2×C6).47(C2×C12), (C2×C4).32(C2×C18), C6.20(C3×C22⋊C4), (C2×C12).167(C2×C6), SmallGroup(288,48)

Series: Derived Chief Lower central Upper central

C1C2 — C9×C22⋊C8
C1C2C6C12C2×C12C2×C36C2×C72 — C9×C22⋊C8
C1C2 — C9×C22⋊C8
C1C2×C36 — C9×C22⋊C8

Generators and relations for C9×C22⋊C8
 G = < a,b,c,d | a9=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 102 in 75 conjugacy classes, 48 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C9, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, C22×C4, C18, C18, C24, C2×C12, C2×C12, C22×C6, C22⋊C8, C36, C36, C2×C18, C2×C18, C2×C18, C2×C24, C22×C12, C72, C2×C36, C2×C36, C22×C18, C3×C22⋊C8, C2×C72, C22×C36, C9×C22⋊C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, C9, C12, C2×C6, C22⋊C4, C2×C8, M4(2), C18, C24, C2×C12, C3×D4, C22⋊C8, C36, C2×C18, C3×C22⋊C4, C2×C24, C3×M4(2), C72, C2×C36, D4×C9, C3×C22⋊C8, C9×C22⋊C4, C2×C72, C9×M4(2), C9×C22⋊C8

Smallest permutation representation of C9×C22⋊C8
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 77)(2 78)(3 79)(4 80)(5 81)(6 73)(7 74)(8 75)(9 76)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 37)(17 38)(18 39)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 28)(46 132)(47 133)(48 134)(49 135)(50 127)(51 128)(52 129)(53 130)(54 131)(55 107)(56 108)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 82)(91 113)(92 114)(93 115)(94 116)(95 117)(96 109)(97 110)(98 111)(99 112)(118 139)(119 140)(120 141)(121 142)(122 143)(123 144)(124 136)(125 137)(126 138)
(1 107)(2 108)(3 100)(4 101)(5 102)(6 103)(7 104)(8 105)(9 106)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 64)(19 117)(20 109)(21 110)(22 111)(23 112)(24 113)(25 114)(26 115)(27 116)(28 94)(29 95)(30 96)(31 97)(32 98)(33 99)(34 91)(35 92)(36 93)(37 90)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)(45 89)(46 121)(47 122)(48 123)(49 124)(50 125)(51 126)(52 118)(53 119)(54 120)(55 77)(56 78)(57 79)(58 80)(59 81)(60 73)(61 74)(62 75)(63 76)(127 137)(128 138)(129 139)(130 140)(131 141)(132 142)(133 143)(134 144)(135 136)
(1 118 42 24 77 129 12 91)(2 119 43 25 78 130 13 92)(3 120 44 26 79 131 14 93)(4 121 45 27 80 132 15 94)(5 122 37 19 81 133 16 95)(6 123 38 20 73 134 17 96)(7 124 39 21 74 135 18 97)(8 125 40 22 75 127 10 98)(9 126 41 23 76 128 11 99)(28 101 46 89 116 58 142 70)(29 102 47 90 117 59 143 71)(30 103 48 82 109 60 144 72)(31 104 49 83 110 61 136 64)(32 105 50 84 111 62 137 65)(33 106 51 85 112 63 138 66)(34 107 52 86 113 55 139 67)(35 108 53 87 114 56 140 68)(36 100 54 88 115 57 141 69)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,77)(2,78)(3,79)(4,80)(5,81)(6,73)(7,74)(8,75)(9,76)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,37)(17,38)(18,39)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,28)(46,132)(47,133)(48,134)(49,135)(50,127)(51,128)(52,129)(53,130)(54,131)(55,107)(56,108)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,82)(91,113)(92,114)(93,115)(94,116)(95,117)(96,109)(97,110)(98,111)(99,112)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,136)(125,137)(126,138), (1,107)(2,108)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,64)(19,117)(20,109)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,94)(29,95)(30,96)(31,97)(32,98)(33,99)(34,91)(35,92)(36,93)(37,90)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,118)(53,119)(54,120)(55,77)(56,78)(57,79)(58,80)(59,81)(60,73)(61,74)(62,75)(63,76)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142)(133,143)(134,144)(135,136), (1,118,42,24,77,129,12,91)(2,119,43,25,78,130,13,92)(3,120,44,26,79,131,14,93)(4,121,45,27,80,132,15,94)(5,122,37,19,81,133,16,95)(6,123,38,20,73,134,17,96)(7,124,39,21,74,135,18,97)(8,125,40,22,75,127,10,98)(9,126,41,23,76,128,11,99)(28,101,46,89,116,58,142,70)(29,102,47,90,117,59,143,71)(30,103,48,82,109,60,144,72)(31,104,49,83,110,61,136,64)(32,105,50,84,111,62,137,65)(33,106,51,85,112,63,138,66)(34,107,52,86,113,55,139,67)(35,108,53,87,114,56,140,68)(36,100,54,88,115,57,141,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,77)(2,78)(3,79)(4,80)(5,81)(6,73)(7,74)(8,75)(9,76)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,37)(17,38)(18,39)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,28)(46,132)(47,133)(48,134)(49,135)(50,127)(51,128)(52,129)(53,130)(54,131)(55,107)(56,108)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,82)(91,113)(92,114)(93,115)(94,116)(95,117)(96,109)(97,110)(98,111)(99,112)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,136)(125,137)(126,138), (1,107)(2,108)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,64)(19,117)(20,109)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,94)(29,95)(30,96)(31,97)(32,98)(33,99)(34,91)(35,92)(36,93)(37,90)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,118)(53,119)(54,120)(55,77)(56,78)(57,79)(58,80)(59,81)(60,73)(61,74)(62,75)(63,76)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142)(133,143)(134,144)(135,136), (1,118,42,24,77,129,12,91)(2,119,43,25,78,130,13,92)(3,120,44,26,79,131,14,93)(4,121,45,27,80,132,15,94)(5,122,37,19,81,133,16,95)(6,123,38,20,73,134,17,96)(7,124,39,21,74,135,18,97)(8,125,40,22,75,127,10,98)(9,126,41,23,76,128,11,99)(28,101,46,89,116,58,142,70)(29,102,47,90,117,59,143,71)(30,103,48,82,109,60,144,72)(31,104,49,83,110,61,136,64)(32,105,50,84,111,62,137,65)(33,106,51,85,112,63,138,66)(34,107,52,86,113,55,139,67)(35,108,53,87,114,56,140,68)(36,100,54,88,115,57,141,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,77),(2,78),(3,79),(4,80),(5,81),(6,73),(7,74),(8,75),(9,76),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,37),(17,38),(18,39),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,28),(46,132),(47,133),(48,134),(49,135),(50,127),(51,128),(52,129),(53,130),(54,131),(55,107),(56,108),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,82),(91,113),(92,114),(93,115),(94,116),(95,117),(96,109),(97,110),(98,111),(99,112),(118,139),(119,140),(120,141),(121,142),(122,143),(123,144),(124,136),(125,137),(126,138)], [(1,107),(2,108),(3,100),(4,101),(5,102),(6,103),(7,104),(8,105),(9,106),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,64),(19,117),(20,109),(21,110),(22,111),(23,112),(24,113),(25,114),(26,115),(27,116),(28,94),(29,95),(30,96),(31,97),(32,98),(33,99),(34,91),(35,92),(36,93),(37,90),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88),(45,89),(46,121),(47,122),(48,123),(49,124),(50,125),(51,126),(52,118),(53,119),(54,120),(55,77),(56,78),(57,79),(58,80),(59,81),(60,73),(61,74),(62,75),(63,76),(127,137),(128,138),(129,139),(130,140),(131,141),(132,142),(133,143),(134,144),(135,136)], [(1,118,42,24,77,129,12,91),(2,119,43,25,78,130,13,92),(3,120,44,26,79,131,14,93),(4,121,45,27,80,132,15,94),(5,122,37,19,81,133,16,95),(6,123,38,20,73,134,17,96),(7,124,39,21,74,135,18,97),(8,125,40,22,75,127,10,98),(9,126,41,23,76,128,11,99),(28,101,46,89,116,58,142,70),(29,102,47,90,117,59,143,71),(30,103,48,82,109,60,144,72),(31,104,49,83,110,61,136,64),(32,105,50,84,111,62,137,65),(33,106,51,85,112,63,138,66),(34,107,52,86,113,55,139,67),(35,108,53,87,114,56,140,68),(36,100,54,88,115,57,141,69)]])

180 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A···6F6G6H6I6J8A···8H9A···9F12A···12H12I12J12K12L18A···18R18S···18AD24A···24P36A···36X36Y···36AJ72A···72AV
order122222334444446···666668···89···912···121212121218···1818···1824···2436···3636···3672···72
size111122111111221···122222···21···11···122221···12···22···21···12···22···2

180 irreducible representations

dim111111111111111111222222
type++++
imageC1C2C2C3C4C4C6C6C8C9C12C12C18C18C24C36C36C72D4M4(2)C3×D4C3×M4(2)D4×C9C9×M4(2)
kernelC9×C22⋊C8C2×C72C22×C36C3×C22⋊C8C2×C36C22×C18C2×C24C22×C12C2×C18C22⋊C8C2×C12C22×C6C2×C8C22×C4C2×C6C2×C4C23C22C36C18C12C6C4C2
# reps1212224286441261612124822441212

Matrix representation of C9×C22⋊C8 in GL3(𝔽73) generated by

100
0370
0037
,
100
014
0072
,
100
0720
0072
,
6300
07168
012
G:=sub<GL(3,GF(73))| [1,0,0,0,37,0,0,0,37],[1,0,0,0,1,0,0,4,72],[1,0,0,0,72,0,0,0,72],[63,0,0,0,71,1,0,68,2] >;

C9×C22⋊C8 in GAP, Magma, Sage, TeX

C_9\times C_2^2\rtimes C_8
% in TeX

G:=Group("C9xC2^2:C8");
// GroupNames label

G:=SmallGroup(288,48);
// by ID

G=gap.SmallGroup(288,48);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-2,168,197,268,242]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽